Titelaufnahme

Titel
Variational principles on metric and uniform spaces / von Andreas Hamel
VerfasserHamel, Andreas
Erschienen2005 ; Göttingen : Niedersächsische Staats- und Universitätsbibliothek ; Halle, Saale : Universitäts- und Landesbibliothek
UmfangOnline-Ressource, Text + Image (146 S.)
HochschulschriftHalle, Univ., Habil.-Schr., 2005
Anmerkung
Sprache der Zusammenfassung: Deutsch
SpracheEnglisch
DokumenttypE-Book
SchlagwörterElektronische Publikation
URNurn:nbn:de:gbv:3-000009148 
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Dateien
Variational principles on metric and uniform spaces [0.77 mb]
Links
Nachweis

Das Thema der Habilitationsschrift sind Theoreme vom Ekeland-Typ für Functionen f : X Y und (partielle) Minimal-Element-Theoreme für Teilmengen M X × Y , wobei X ein vollständiger metrischer oder ein (folgen-)vollständiger uniformer Raum und Y eine beliebige nichtleere Menge ist. Zwei Fälle von besonderer Bedeutung werden speziell untersucht: Y ist ein geordnetes Monoid und Y ist die Potenzmenge eines quasigeordneten linearen Raumens, die ihrerseits quasigeordnet wird durch die beiden kanonischen Erweiterungen der Ordnungsrelation auf dem linearen Raum zu Relationen auf dessen Potenzmenge. Die Beweise der Variationsprinzipien bestehen aus zwei Schritten: Zuerst wird ein (partielles) Minimal-Element-Theorem auf dem metrischen/uniformen Raum bewiesen und dann das Variationsprinzip als Folgerung hergeleitet, indem eine geeignete Ordnungsrelation definiert wird. Fast alle bekannten Resultate des Gebietes wie Ekelands Variationsprinzip, Phelps' Lemma, Danes' Tropfensatz, Kirk-Caristis Fixpunktsatz und Minimalpunkttheoreme werden auf diese Art wesentlich verallgemeinert. Darüber hinaus werden eine Reihe neuer Resultate angeben, die Mengenrelationen benutzen. Die Schrift beginnt mit einem Kapitel über algebraische und ordnungstheoretische Eigenschaften von Potenzmengenstrukturen. Es wird das Konzept eines (geordneten) konlinearen Raumes eingeführt als Verallgemeinerung eines (geordneten) linearen Raumes. Mengenrelationen auf Potenzmengen geordneter Mengen werden untersucht. Das Hauptergebnis dazu ist die Beziehung zwischen der Menge minimaler/maximaler Punkte für die ursprüngliche Relation und dem Infimum/Supremum für die Mengenrelationen.

Zusammenfassung (Englisch)

The topic of the habilitation thesis are Ekeland type theorems for functions f : X Y and (partial) minimal element theorems for subsets M X × Y , where X is a complete metric or a (sequentially) complete uniform space and Y an arbitrary nonempty set. Two cases of special importance are investigated: Y is an ordered monoid and Y is the power set of a quasiordered linear space, itself quasiordered by the two canonical extensions of the order relation on the linear space to its power set. The proofs of the variational principles are divided in two steps: First, a (partial) minimal element theorem on a metric/uniform space is proven and second, the variational principle is derived as a corollary by introducing a suitable order relation. Almost all known results of the field such as Ekeland's variational principle, Phelps' lemma, Danes' drop theorem, Kirk-Caristi's fixed point theorem and minimal point theorems are generalized considerably in this way. Moreover, new formulations in terms of set relations are given. The thesis starts with a chapter on algebraic and order theoretic properties of power structures. The concept of a (an ordered) conlinear space is introduced as a generalization of a linear space. Set relations on power sets of ordered sets are investigated. The main result is the relationship between minimal/maximal points for the original relation and the infimum/supremum for the set relations.

Keywords
Ekelands Variationsprinzip Minimalpunkttheoreme uniforme Räume metrische Räume Mengenrelationen konlineare Räume Caristis Fixpunktsatz Tropfensatz
Keywords (Englisch)
Ekeland's variational principle minimal point theorem uniform space metric space set relation conlinear space Caristi's fixed point theorem drop theorem