Titelaufnahme

Titel
Lipschitz properties of vector- and set-valued functions with applications / vorgelegt von Anh Tuan Vu
VerfasserVu, Anh Tuan
Akademischer Betreuer/InTammer, Christiane ; Truong, Quang Bao
BeteiligtTammer, Christiane ; Truong, Quang Bao
KörperschaftMartin-Luther-Universität Halle-Wittenberg
ErschienenHalle, 2018
Umfang1 Online-Ressource (121 Seiten)
HochschulschriftMartin-Luther-Universität Halle-Wittenberg, Dissertation, 2018
Anmerkung
Tag der Verteidigung: 02.02.2018
SpracheEnglisch
DokumenttypE-Book
URNurn:nbn:de:gbv:3:4-21748 
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Dateien
Lipschitz properties of vector- and set-valued functions with applications [0.75 mb]
Links
Nachweis
Klassifikation
Zusammenfassung

In dieser Arbeit haben wir systematisch die Zusammenhänge zwischen Lipschitz-Stetigkeit und Konvexität von vektorwertigen und mengenwertigen Funktionen untersucht. Wir haben bewiesen, dass eine C-konvexe vektorwertige Funktion lokal Lipschitz-stetig ist, falls sie C-beschränkt von oben ist, wobei C ein normal Kegel ist. Es gibt zahlreiche Zusammenhänge zwischen Lipschitz-Stetigkeit und Konvextität für mengenwertige Funktionen, da es in der Literatur viele verschiedene Definitionen dieser gibt. Wir haben weiter Skalarisierungsfunktionale benutzt um die C-Lipschitz-Stetigkeit von konvexen mengenwertigen Funktionen zu beweisen. Die hergeleiteten Resultate wurden dann genutzt um notwendige Bedingungen für (schwache) Pareto-effiziente Lösungen von Vektoroptimierungsproblemen für einen Kegel C herzuleiten. Zudem studierten wir notwendige Bedingungen für Minimierer von mengenwertigen Optimierungsproblemen, die auf einem Urraum- und Dualraum-Ansatz basieren.

Zusammenfassung
( AEnglischA )

We studied systematically the relationships between Lipschitz continuity and convexity of vector-valued functions and set-valued functions. We proved that a C-convex vector-valued function is locally Lipschitz if it is C-bounded from above, where C is a normal cone. The relationships between the Lipschitz continuity and the convexity for set-valued functions are abundant since there are many approaches to define them in the literature. We derived scalarizing functions to prove the C-Lipschitzianity of convex set-valued functions. The obtained results are applied in order to derive the necessary optimality conditions for vector- and set-valued optimization problems. We considered the Lagrangian necessary conditions for (weakly) Pareto efficient solutions of vector optimization problems in both solid and non-solid cases. We also established necessary conditions for minimizers of the set-valued optimization problem based on a primal-space approach and a dual-space approach.

Keywords
Lipschitz; Kegel-konvex; vektorwertige Funktion; mengenwertige Funktion; Optimierungensproblem; Optimalitätsbedingung; Pareto-effizient; nichtlineares Skalarisierungsfunktional
Keywords (Englisch)
Lipschitz; cone-convex; vector-valued function; set-valued function; optimization problem; optimality condition; Pareto effcient; nonlinear scalarizing functional