Titelaufnahme

Titel
Approximation and optimal control of the stochastic Navier-Stokes equation / von Hannelore Inge Breckner
BeteiligteBreckner, Hannelore Inge
Erschienen1999 ; Halle, Saale : Universitäts- und Landesbibliothek ; Göttingen : Niedersächsische Staats- und Universitätsbibliothek
Ausgabe
[Elektronische Ressource]
UmfangElektronische Ressource, Text
HochschulschriftHalle, Univ., Diss., 1999
Anmerkung
Sprache der Zusammenfassung: Deutsch
SpracheEnglisch
DokumenttypE-Book
SchlagwörterElektronische Publikation
URNurn:nbn:de:gbv:3-000000339 
Zugriffsbeschränkung
 Das Dokument ist frei verfügbar.
Dateien
Approximation and optimal control of the stochastic Navier-Stokes equation [0.59 mb]
Links
Nachweis

Die vorliegende Arbeit ist der Untersuchung der Eigenschaften der stochastischen Navier-Stokes-Gleichung gewidmet: Es werden Existenz- und Eindeutigkeitssätze für die Lösung bewiesen, eine lineare Approximationsmethode angegeben sowie Aussagen zur optimalen Steuerung der Gleichung bezüglich des Einflusses der äußeren Kräfte hergeleitet. Es wird die Existenz von optimalen Steuerungen bewiesen, wobei die Kompaktheitseigenschaft der Menge der zulässigen Steuerungen nicht vorausgesetzt werden muß. Eine notwendige Optimalitätsbedingung für das Problem der optimalen Steuerung wird in Form eines stochastischen Minimumprinzips hergeleitet. Um die Aussagen für das Steuerproblem abzurunden, wurde die Bellmansche Funktionalgleichung hergeleitet.

Zusammenfassung (Englisch)

The aim of this dissertation is to prove the existence of the strong solution of the Navier-Stokes equation by approximating it by means of the Galerkin method, i.e., by a sequence of solutions of finite dimensional evolution equations. The Galerkin method involves solving nonlinear equations and often it is difficult to deal with them. For this reason we approximate the solution of the stochastic Navier-Stokes equation by the solutions of a sequence of linear stochastic evolution equations. Another interesting aspect of the stochastic Navier-Stokes equation is to study the behavior of the flow if we act upon the fluid through various external forces. We address the issue of the existence of an optimal action upon the system in order to minimize a given cost functional. We also derive a stochastic minimum principle and investigate Bellman's equation for the considered control problem.

Keywords
stochastische Navier-Stokes-Gleichung stochastische Evolutionsgleichung Galerkin-Methode lineare Approximation stochastische optimale Steuerung Existenz von optimalen Steuerungen stochastisches Minimumprinzip Markov Eigenschaft
Keywords (Englisch)
stochastic Navier-Stokes equation stochastic evolution equation Galerkin method linear approximation stochastic optimal control existence of optimal controls stochastic minimum principle Markov property
Keywords
Zsfassung in dt. Sprache